Acta Crystallographica Section E

## Structure Reports

Online

## 4-(2-Pyridylmethyleneamino)-3-(2-thienylmethyl)-1H-1,2,4-triazol-5(4H)-one

ISSN 1600-5368

Isıl Yılmaz, ${ }^{\text {a }}{ }^{*}$ N. Burcu Arslan, ${ }^{\text {a }}$ Canan Kazak, ${ }^{\text {a }}$ Kemal Sancak ${ }^{\text {b }}$ and Yasemin Unver ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Art and Science, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Art and Sciences, Karadeniz Technical University, Trabzon, Turkey

Correspondence e-mail: isil_ylmaz@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.043$
$w R$ factor $=0.107$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OS}$, molecules are linked into centrosymmetric dimers through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## Comment

Azole derivatives, such as derivatives of pyrazole, imidazole, triazole (including benzotriazole), tetrazole, indole etc., exhibit extensive biological activities. They have become the central focus in the study of agricultural chemicals, adjustment reagents for plant growth and so on (Haddock \& Hopwood, 1982). Triazole ring systems are typical planar $6 \pi$-electron partially aromatic systems, and 1,2,4-triazole and its derivatives are used as starting materials for the synthesis of many heterocycles (Desenko, 1995). Recently, much attention has been focused on 1,2,4-triazole derivatives for their broadspectrum activities, such as fungicidal, insecticidal, herbicidal, anticonvulsant, antitumour and plant growth regulatory activities (Jenkins et al., 1989; Er-Rahimini \& Mornet, 1992; Nakib et al., 1994; Chai et al., 2003; Tsuda et al., 2004).

Received 4 May 2006
Accepted 22 June 2006

[^0]
(I)

In the title compound, (I), the thiophene ring presents $\mathrm{C}-\mathrm{S}$ bond lengths similar to each other (Table 1) and also to other values reported in the literature (Vrábel et al., 2005). The $\mathrm{C} 6=\mathrm{N} 1$ bond is clearly a double bond, being much shorter than the other $\mathrm{C}-\mathrm{N}$ bonds in the triazole ring. This distance is also comparable to literature data (Çoruh et al., 2003; Yilmaz et al., 2005). The crystal structure features centrosymmetric dimers, formed by classical intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, involving the amine functionality and the carbonyl of the triazole ring (Table 2).

## Experimental

4-Amino-5-thiophen-2-ylmethyl-2,4-dihydro-1,2,4-triazol-3-one ( $0.196 \mathrm{~g}, 1 \mathrm{mmol}$ ) was mixed with pyridine-2-carbaldehyde ( 0.09 ml , $0.107 \mathrm{~g}, 1 \mathrm{mmol}$ ) at $373-383 \mathrm{~K}$ for 1 h . The resulting solid crude product was crystallized from alcohol-water. The crystals $(0.22 \mathrm{~g}$, yield $81.4 \%$ ) were improved by crystallizing several times from the same solvent mixture and were dried in vacuo.


Figure 1
A view of (I), with the atom-numbering scheme and $50 \%$ probability displacement ellipsoids.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OS} \\
& M_{r}=285.33 \\
& \text { Monoclinic, } P 2_{\downarrow} / n \\
& a=5.6726(4) \AA \\
& b=18.3669(11) \AA \\
& c=12.560(9) \AA \\
& \beta=92.651(6)^{\circ} \\
& V=1308.14(15) \AA^{3}
\end{aligned}
$$

## Data collection

Stoe IPDS-II diffractometer $\omega$ scans
Absorption correction: integration
( $X$-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.910, T_{\text {max }}=0.988$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.107$
$S=0.96$
2564 reflections
182 parameters
H -atom parameters constrained

$$
Z=4
$$

$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.48 \times 0.20 \times 0.02 \mathrm{~mm}$

13756 measured reflections 2564 independent reflections 1785 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=26.0^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0622 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.28 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97 Extinction coefficient: 0.0091 (19)

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{C} 1-\mathrm{S} 1$ | $1.701(3)$ | $\mathrm{C} 7-\mathrm{O} 1$ | $1.239(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 4-\mathrm{S} 1$ | $1.712(2)$ | $\mathrm{C} 7-\mathrm{N} 2$ | $1.341(3)$ |
| $\mathrm{C} 6-\mathrm{N} 1$ | $1.290(3)$ | $\mathrm{C} 7-\mathrm{N} 3$ | $1.393(3)$ |
| $\mathrm{C} 6-\mathrm{N} 3$ | $1.384(3)$ | $\mathrm{N} 1-\mathrm{N} 2$ | $1.389(3)$ |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 2-\mathrm{H} 6 \cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$ | 0.86 | 1.95 | $2.777(2)$ | 161 |

Symmetry code: (i) $-x,-y,-z+2$.
All H atoms were positioned geometrically and treated using a riding model, constraining the aromatic $\mathrm{C}-\mathrm{H}$ distances at 0.93 A , methylene $\mathrm{C}-\mathrm{H}$ distances at $0.97 \AA$ and the $\mathrm{N}-\mathrm{H}$ distance at $0.86 \AA$. Isotropic displacement parameters for H atoms were fixed at $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X$-RED (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

## References

Chai, B., Qian, X., Cao, S., Liu, H. \& Song, G. (2003). Arkivoc, part ii, pp. 141145. (URL: http://www.arkat-usa.org/).

Çoruh, U., Ustabaş, R., Sancak, K., Şaşmaz, S., Ağar, E. \& Kim, Y. (2003). Acta Cryst. E59, o1277-o1279.
Desenko, S. M. (1995). Khim. Geterotsiki Soedin. (Chem. Heterocycl. Comput.), pp. 2-24. (In Russian.)
Er-Rahimini, A. \& Mornet, R. (1992). J. Heterocycl. Chem. 29, 1561-1566.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Haddock, E. \& Hopwood, W. J. (1982). GB Patent Number 2078212.
Jenkins, T. C., Stratford, I. J. \& Stephens, M. A. (1989). Anticancer Drug. Des. 4, 145-160.
Nakib, A. T., Meegen, J. M. \& Burke, L. M. (1994). J. Chem. Res. pp. 170-171.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). $X$ - $A$ REA (Version 1.18) and $X$-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tsuda, M., Itoh, H. \& Kato, S. (2004). Pest Manag. Sci. 60, 881-886.
Vrábel, V., Kožǐišek, J., Marchalín, S̆. \& Svoboda, I. (2005). Acta Cryst. E61, o733-o735.
Yilmaz, V. T., Kazak, C., Ağar, E., Kahveci, B. \& Guven, K. (2005). Acta Cryst. C61, o101-o104.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

