Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Isil Yılmaz,^a* N. Burcu Arslan,^a Canan Kazak,^a Kemal Sancak^b and Yasemin Unver^b

^aDepartment of Physics, Faculty of Art and Science, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Art and Sciences, Karadeniz Technical University, Trabzon, Turkey

Correspondence e-mail: isil_ylmaz@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.043 wR factor = 0.107 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(2-Pyridylmethyleneamino)-3-(2-thienylmethyl)-1*H*-1,2,4-triazol-5(4*H*)-one

In the title compound, $C_{13}H_{11}N_5OS$, molecules are linked into centrosymmetric dimers through intermolecular $N-H\cdots O$ hydrogen bonds.

Received 4 May 2006 Accepted 22 June 2006

Comment

Azole derivatives, such as derivatives of pyrazole, imidazole, triazole (including benzotriazole), tetrazole, indole *etc.*, exhibit extensive biological activities. They have become the central focus in the study of agricultural chemicals, adjustment reagents for plant growth and so on (Haddock & Hopwood, 1982). Triazole ring systems are typical planar 6π -electron partially aromatic systems, and 1,2,4-triazole and its derivatives are used as starting materials for the synthesis of many heterocycles (Desenko, 1995). Recently, much attention has been focused on 1,2,4-triazole derivatives for their broadspectrum activities, such as fungicidal, insecticidal, herbicidal, anticonvulsant, antitumour and plant growth regulatory activities (Jenkins *et al.*, 1989; Er-Rahimini & Mornet, 1992; Nakib *et al.*, 1994; Chai *et al.*, 2003; Tsuda *et al.*, 2004).

In the title compound, (I), the thiophene ring presents C–S bond lengths similar to each other (Table 1) and also to other values reported in the literature (Vrábel *et al.*, 2005). The C6—N1 bond is clearly a double bond, being much shorter than the other C–N bonds in the triazole ring. This distance is also comparable to literature data (Çoruh *et al.*, 2003; Yilmaz *et al.*, 2005). The crystal structure features centrosymmetric dimers, formed by classical intermolecular $N-H\cdots$ O hydrogen bonds, involving the amine functionality and the carbonyl of the triazole ring (Table 2).

Experimental

4-Amino-5-thiophen-2-ylmethyl-2,4-dihydro-1,2,4-triazol-3-one (0.196 g, 1 mmol) was mixed with pyridine-2-carbaldehyde (0.09 ml, 0.107 g, 1 mmol) at 373–383 K for 1 h. The resulting solid crude product was crystallized from alcohol–water. The crystals (0.22 g, yield 81.4%) were improved by crystallizing several times from the same solvent mixture and were dried *in vacuo*.

© 2006 International Union of Crystallography All rights reserved

Figure 1

A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Z = 4

 $D_x = 1.449 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$

Prism, colourless

T = 293 (2) K

Crystal data

C13H11N5OS $M_r = 285.33$ Monoclinic, $P2_1/n$ a = 5.6726 (4) Å b = 18.3669 (11) Å c = 12.5690 (9) Å $\beta = 92.651 \ (6)^{\circ}$ $V = 1308.14 (15) \text{ Å}^3$

Data collection

Stoe IPDS-II diffractometer ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.910, \ T_{\max} = 0.988$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ wR(F²) = 0.107 S = 0.962564 reflections 182 parameters H-atom parameters constrained $0.48\,\times\,0.20\,\times\,0.02$ mm 13756 measured reflections

2564 independent reflections 1785 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.061$ $\theta_{\rm max} = 26.0^\circ$

 $w = 1/[\sigma^2(F_0^2) + (0.0622P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}$ -3 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0091 (19)

Table 1		
Calasta J	In a second	1

Selected bond lengths (Å).

C1-S1	1.701 (3)	C7-O1	1.239 (3)
C4-S1	1.712 (2)	C7-N2	1.341 (3)
C6-N1	1.290 (3)	C7-N3	1.393 (3)
C6-N3	1.384 (3)	N1-N2	1.389 (3)

Table 2

Hydrogen-bond	geometry ((A, °).
---------------	------------	-------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H6\cdots O1^i$	0.86	1.95	2.777 (2)	161
Symmetry code: (i)	$-x_{1} - v_{2} - z_{1} + 2$			

All H atoms were positioned geometrically and treated using a riding model, constraining the aromatic C-H distances at 0.93 Å, methylene C-H distances at 0.97 Å and the N-H distance at 0.86 Å. Isotropic displacement parameters for H atoms were fixed at $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm carrier atom}).$

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Chai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkivoc, part ii, pp. 141-145. (URL: http://www.arkat-usa.org/).
- Coruh, U., Ustabaş, R., Sancak, K., Şaşmaz, S., Ağar, E. & Kim, Y. (2003). Acta Cryst. E59, 01277-01279.
- Desenko, S. M. (1995). Khim. Geterotsiki Soedin. (Chem. Heterocycl. Comput.), pp. 2-24. (In Russian.)

Er-Rahimini, A. & Mornet, R. (1992). J. Heterocycl. Chem. 29, 1561-1566.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Haddock, E. & Hopwood, W. J. (1982). GB Patent Number 2 078 212.
- Jenkins, T. C., Stratford, I. J. & Stephens, M. A. (1989). Anticancer Drug. Des. 4, 145-160.
- Nakib, A. T., Meegen, J. M. & Burke, L. M. (1994). J. Chem. Res. pp. 170-171.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Tsuda, M., Itoh, H. & Kato, S. (2004). Pest Manag. Sci. 60, 881-886.
- Vrábel, V., Kožíšek, J., Marchalín, Š. & Svoboda, I. (2005). Acta Cryst. E61, 0733-0735
- Yilmaz, V. T., Kazak, C., Ağar, E., Kahveci, B. & Guven, K. (2005). Acta Cryst. C61. o101-o104.